Words (like articles or prepositions) that are removed from text analysis to focus on more meaningful terms, often customized for specific content.
Hyperparameter tuning is the process of adjusting the configuration settings of an ML algorithm to optimize performance and improve the quality of the model’s output. These parameters are set prior to or during the training process, and are distinct from the parameters learned during training.
In LDA topic modeling, hyperparameters that can be tuned include the number of topics (K), the number of passes or iterations, and the alpha and beta values, which influence the resulting coherence score.
Sources & References
Explore other Core Concepts (AI/ML) terms
A
AI Overview
AI-generated summaries of highly informational, low-intent queries, offering quick answers to users, or generally, a…
A
Artificial Intelligence (AI)
The overarching concept related to the design and study of intelligent systems. Early systems relied…
A
Augmented Search Queries
Queries that expand or modify the original user query to improve search accuracy and relevance…
B
Bag of Words
A type of semantic representation of data, which can be extracted from page contents.
B
Bigram
A sequence of two adjacent words.
D
Deep Learning
A part of machine learning; Generative AI models like ChatGPT and LLM-based chatbots fall within…
D
Dimensionality Reduction
A process that reduces data, such as high-dimensional vectors, for visualization while preserving semantic structure…
E
Embedding
A numerical representation capturing the meaning of a document or data. Also referred to as…
E
Entity
A representation of real-world objects (people, products, places, concepts) that hold value from an SEO…
E
Entity Attribute (EAV Model)
Defining properties or characteristics of an entity (e.g., location, niche) used in the EAV model…
E
Entity Attribute Variable (EAV Model)
The concept encompassing entities, their attributes, and the specific values (variables) associated with those attributes.
E
Entity Variables (EAV)
Specific values an entity attribute can take (e.g., London, Paris for the Location attribute).
